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Since the ®rst publication of the direct-methods modulus sum function [Rius

(1993). Acta Cryst. A49, 406±409], the application of this function to a variety of

situations has been shown in a series of seven subsequent papers. In this way,

much experience about this function and its practical use has been gained. It is

thought by the authors that it is now the right moment to publish a more

complete study of this function which also considers most of this practical

knowledge. The ®rst part of the study relates, thanks to a new interpretation, this

function to other existing phase-re®nement functions, while the second shows,

with the help of test calculations on a selection of crystal structures, the

behaviour of the function for two different control parameters. In this study, the

principal interest is focused on the function itself and not on the optimization

procedure which is based on a conventional sequential tangent formula

re®nement. The results obtained are quite satisfactory and seem to indicate that,

when combined with more sophisticated optimization algorithms, the applica-

tion ®eld of this function could be extended to larger structures than those used

for the test calculations.

1. Introduction

Direct methods solve crystal structures by combining the

information contained in the measured intensities with the

positivity and atomicity of the electron-density distribution.

Conventional multisolution direct methods re®ne the collec-

tivity � of phases 'h of the normalized structure factors Eh of

the strong re¯ections h by searching for an extremum of a

given target or phase re®nement function. For simplicity, an

equal-atom structure with N atoms in the unit cell belonging to

space group P1 will be assumed throughout this paper.

From a practical point of view, there exist two very impor-

tant types of phase-re®nement functions:

(i) Functions minimizing the discrepancies between the

cosines of the three-phase structure invariants �3(h, h0) and

their expectation values " as, for example, in the function 	D

of Debaerdemaeker & Woolfson (1983),

	D��� �
P

h

P
h0

K�h; h0�fcos��3�h; h0�� ÿ "�K�h; h0��g2

� minimum; �1�

wherein the indices h, h0 and h ÿ h0 denote re¯ections with

large |E| values and

K�h; h0� � 2Nÿ1=2jEÿhjjEh0 jjEhÿh0 j �2�

is the concentration parameter of the conditional probability

distribution of the triplets. This function was tested by

Debaerdemaeker & Woolfson (1983) with rather poor results.

As shown later by Weeks et al. (1993), the effectiveness of this

type of function increases dramatically when the phase

re®nement in reciprocal space alternates with real-space

calculations to impose atomic constraints. This iterative two-

step re®nement is known as the `Shake-and-Bake procedure'

and is responsible for the fully automatic routine solution of

structures in the 200±400 atom range (Weeks et al., 1994). The

phase re®nement is normally carried out by using either a

modi®ed tangent formula or the parameter-shift method

(Bhuiya & Stanley, 1963) adapted to phase re®nement.

(ii) A second type of phase-re®nement function is based on

the minimization of the residual

R��� � h�jEHj ÿ jEH���j�2iH �3�
with H denoting both large and weak re¯ections, and where

the atomicity constraint is introduced via Sayre's equation by

making in expression

jEH���j � cH

P
h0
jEh0 jjEHÿh0 j cos��ÿH � 'h0 � 'Hÿh0 � �4�

the respective phases ' and � of the structure factors of the

strong re¯ections in the true and squared structures equal

(Rius, 1993).
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The residual can be written in the form

R��� � Aÿ 2B��� � C��� �5�
A � hjEHj2iH

B��� � hjEHjjEH���jiH
C��� � hjEH���j2iH

which clearly shows that minimization of R(�) is equivalent to

minimizing the difference C(�) ÿ 2B(�). By neglecting the

contributions of the weak re¯ection to B(�) and since C(�)

can be expressed in the form

C��� �P
h

Eÿh

D
c2

HEÿH�h

P
h00

Eh00EHÿh00

E
H

�6�

Rius & Miravitlles (1991) showed that R(�) can be minimized

by means of the modi®ed tangent formula

'h � phase of
nP

h0
Eh0Ehÿh0 ÿ c

P
H

EÿH�h

P
h00

Eh00EHÿh00

o
�7�

which is closely related to the Sayre-equation tangent formula

(Debaerdemaeker et al., 1985). However, one dif®culty for its

practical application comes from the presence of the scaling

constant c, the average value of cH. At this point, the question

arises whether there exists an alternative way of expressing R

that leads to a phase-re®nement function without the scaling

constant problem. As will be shown in the next section, the

direct-methods modulus sum function offers one solution.

2. A new interpretation of the modulus sum function
S(U)

The residual R(�) can be expressed in an alternative way by

making full use of the atomicity constraint. Effectively, if the

atomicity condition is ful®lled, then, as predicted by the

acentric probability distribution of the |E| values, the moduli

|E| have restricted values close to 1 (Wilson, 1949; Woolfson,

1970). Consequently, the following approximate relationship

between the moduli |E| and their squares |E|2 will hold (Fig. 1),

namely

jEj2 � hjEj2i � �jEj ÿ hjEji��djEj2=djEj�jEj�hjEji
� 2hjEjijEj ÿ 2hjEji2 � hjEj2i: �8�

By introducing in |E| the dependence on � and taking the

average over H, C(�) may be approximated by

C��� � 2hjEHjiHhjEH���ji ÿ 2hjEHji2H � hjEHj2iH : �9�
Next, by replacing (9) in (5), the residual expression simpli®es

to

R��� � Sexp ÿ S��� � minimum �10�
wherein

Sexp � 2�hjEHj2iH ÿ hjEHji2H� �11�
S��� � 2h�jEHj ÿ hjEKjiK�jEH���jiH : �12�

S(�) is the so-called direct-methods modulus sum function

(Rius, 1993; Rius, Torrelles & Miravitlles, 2000). From (10), it

follows that, as long as the atomicity condition is satis®ed,

minimization of R(�) is equivalent to maximizing S(�) and

that no estimation of scaling constants is necessary. By use of

the same procedure as Debaerdemaeker et al. (1985), the new

phase estimates maximizing S(�) can be solved for the limit of

S(�),

�@=@'h�S��� � 2h�jEHj ÿ hjEKjiK��@=@'h�jEH���jiH
� 0 for all h; �13�

which leads to the sum function tangent formula, SF-TF (Rius,

1993),

'h � phase of
nP

h0
Xh;h0Eh0Ehÿh0

�P
l

�jElj ÿ hjEKjiK�Ehÿl exp�l

o
�14�

with

Xh;h0 � 1ÿ 1
3 hjEKjiK��1=Eÿh� � �1=Eh0 � � �1=Ehÿh0 ��: �15�

In (14), the sum over h0 takes into account the contributions of

the large re¯ections while the sum over l considers the

contributions of the weak ones.

3. Principal advantages and limitations of function S(U)

(i) The principal limitation of S(�), which also holds for

	D(�), is the ful®lment of the atomicity condition, i.e. the

availability of intensity data up to atomic resolution.

(ii) One important advantage of S(�) is the simplicity of

implementation. As has been pointed out above, it involves no

scaling constants or complex weighting schemes, and in addi-

tion it does not require alternate re®nements in reciprocal and

real space. This function is quite useful, for example, for

solving structures from powder data (Rius et al., 1995, 1999;

Rius, Torrelles, Miravitlles, Ochando et al., 2000; Rius, 2000)

and, as shown in the test examples, it is also capable of

determining structures with up to 500 atoms in the asymmetric

Figure 1
|E|2 approximated with equation 2hjEjiHjEj ÿ 2hjEji2H � hjEj2iH (straight
lines) using experimental mean values taken from MBH2; dashed line for
Nweak � Nlarge; continuous line with all re¯ections.



unit. In a slightly modi®ed form, it is also able to cope with the

in-plane diffraction intensity data of reconstructed surfaces

(Rius et al., 1996; Torrelles, Rius, Miravittles & Ferrer, 1998;

Torrelles, Rius, Boscherini et al., 1998; Pedio et al., 2000).

(iii) One of the strengths of S(�) comes from the active use

of the weak E values, which is decisive for the phase-re®ne-

ment effectiveness without leaving the reciprocal space. This

fact, however, turns into a drawback for certain applications,

e.g. the solution of the anomalous-scatterer substructure in

proteins. Since the re¯ections with weak substructure contri-

butions are here unknown, S(�) cannot be applied (at least at

present). The Shake-and-Bake algorithm avoids this problem

by combining re®nement of 	D(�) (which only requires large

|E| values) with the application of the atomic constraints in

real space.

(iv) S(�) uses triplets of type s-s-s and w-s-s (s = strong,

w = weak). For small and medium sized structures, this is not a

problem. For large structures, however, the number of triplets

becomes very high, so that the function 	D(�), which only

involves triplets of type s-s-s, seems to be more favourable.

Recently, Burla et al. (2000) have presented a new direct-

methods strategy which consists of applying, for a given trial,

successive cycles of phase re®nement while gradually reducing

the |E|min value. The resulting direct-methods solution is

exhaustively worked out in real space. Unlike `Shake and

Bake', direct methods do not alternate with the real-space

part, so that a large number of triplets has a less negative

effect in this new strategy.

4. Optimizing the control parameters

Two important parameters in the implementation of function

S(�) have been investigated with the help of some test

calculations: (i) the value of |E|min, i.e. the cut-off value for

considering a re¯ection as large, and (ii) once the optimum

|E|min is ®xed, the ratio r of number of weak re¯ections to

number of large re¯ections (r = Nweak=Nlarge).

4.1. The cut-off value |E|min

This value controls the number of large re¯ections in S(�)

and, consequently, the number of phases to be re®ned. It also

has a direct in¯uence on the accuracy of |EH(�)| since, as

indicated in (4), |EH(�)| is expressed as a function of � using

Sayre's equation. It is tempting to select a large |E|min to

reduce as much as possible the number of re®ned phases.

However, since this is at the cost of the accuracy of |EH(�)|, it

is ®rst necessary to study to what extent the variation of |E|min

affects the accuracy at different data resolutions dmin. This
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Figure 2
Correlation coef®cient CC between |Eh| and Xh = |Eh(�)| cos('ÿh + �h)
for different cut-off values |E|min and data resolutions dmin. Xh computed
with correct phases. Test data taken from a purely organic compound. For
dmin � 1.0 AÊ , CC is relatively insensitive to the cut-off value, so that
values as large as |E|min � 1.6 can be tolerated. For dmin > 1 AÊ ,
deterioration progresses very quickly.

Table 1
Relevant information for the compounds used in the test calculations.

PDB is the ®le code in the Protein Data Bank. The composition of the asymmetrical unit is given as the approximate number of C, N and O atoms followed by the
additional non-H atoms (if any). The selected crystal structures cover a variety of space groups and a variable degree of dif®culty in the application of direct
methods.

Code Space group Composition Z Reference PDB

PGE2 P1 25 1 DeTitta et al. (1980) ±
MBH2 P1 18 3 Poyser et al. (1986) ±
SUOA P212121 47 4 Oliver & Strickland (1984) ±
Goldman2 Cc 28 8 Irngartinger et al. (1981) ±
MGHEX P31 92 + Mg + 2Cl 3 Williams & Lawton (1975) ±
Munich1 C2 20 8 Szeimies-Seebach et al. (1978) ±
BHAT Pc 42 2 Bhat & Ammon (1990) ±
TVAL P1 78 2 Smith et al. (1975) ±
Winter2 P21 82 + 2Cl 2 Butters et al. (1981) ±
APAPA P41212 67 + 2P 8 Suck et al. (1976) ±
PEP1 P212121 85 4 Antel et al. (1995) ±
APP C2 300 + Zn 4 Glover et al. (1983) ±
Rubredoxin P21 452 + Fe 2 Sheldrick et al. (1993) 8rxn
Alpha1 P1 503 + Cl 1 PriveÂ et al. (1999) 1byz
Pheromone C2 318 + 7S 4 Anderson et al. (1996) 2erl
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study has been performed with the data of the organic struc-

ture PEP1. The indicator selected for measuring the evolution

of the accuracy for different |E|min and dmin values has been the

correlation coef®cient CC between the values |Eh| and

Xh � |Eh(�)| cos('ÿh + �h), the latter calculated with correct

phases (Fig. 2),

CC �
hP jEhjXh

i.hP jEhj2
P

X2
h

i1=2

: �16�

The principal conclusion from inspection of Fig. 2 is that, for

dmin � 1 AÊ , |E|min values up to approximately 1.6 can be

tolerated (CC = 0.96). At this resolution, the degradation of

the accuracy progresses relatively slowly. This is in clear

contrast with the situation for dmin � 1.2 AÊ . Here, the accuracy

deteriorates markedly as evidenced by the value CC = 0.89

obtained for |E|min = 1.55. This low CC value means that, at

this resolution, purely organic compounds will be hardly

solved with the S(�) function.

Once the upper cut-off value of |E|min is ®xed at 1.6±1.7 for

dmin values close to 1 AÊ , tests with smaller |E|min values on a

variety of diffraction data sets were performed. Their degree

of dif®culty is variable and in most cases the classical tangent

formula (Karle & Hauptman, 1956; Yao, 1981) cannot solve

them in a reasonable number of trials. The diffraction data are

almost complete up to dmin = 1 AÊ and the number of weak

re¯ections has been estimated from Nweak � Nlarge. The

information about the selected compounds is summarized in

Table 1 which also contains the PDB ®le code when protein

data have been deposited in the Protein Data Bank. The

largest structures are at the bottom of the table. All calcula-

tions have been carried out with a new version of program

XLENSTM which, after clustering and sorting the direct-

methods solutions according to the re®ned S(�) values,

automatically performs, for each solution, a Fourier-recycling

step followed by the corresponding R-value calculation for the

measured re¯ections. The direct-methods solutions are

analysed until the correct solution is found or a given cut-off

Table 2
Results of the application of functions S(�) to the test structures.

dmin is the upper resolution limit in AÊ of the data used; |E|min is the cut-off value for considering a re¯ection as large; � is the number of re®ned phases; h|E|i is the
mean value of |E| taken over all re¯ections taking part in the re®nement; C-TF is the classical tangent formula (Karle & Hauptman, 1956) and SF-TF the tangent
formula maximizing the modulus sum function (Rius, 1993), number of trials at the right; r.n. is the ranking number of the cluster with the correct trials and R the
corresponding `pseudo-residual' ®gure of merit (see text for de®nition) obtained after Fourier recycling. Inspection of the table clearly shows that the best results
are obtained for |E|min = 1.25. Not only the ranking numbers of the correct solutions are lower but also the number of correct solutions increase. In most cases, the
correct solution is the top solution.

Code dmin |E|min � h|E|i % sol. with C-TF % sol.with SF-TF r.n. R (%)

PGE2 1.0 1.25 169 1.00 0 / 100 94 / 100 1 38²
1.45 112 1.09 0 / 100 39 / 100 1
1.65 78 1.17 0 / 100 64 / 100 1

MBH2 1.0 1.25 448 0.97 0 / 100 88 / 100 1 15
1.45 278 1.03 0 / 100 69 / 100 1
1.65 162 1.10 0 / 100 2 / 100 12

SUOA 1.0 1.25 385 0.96 0 / 100 5.2 / 100 4 13
1.45 240 1.03 0 / 100 2 / 100 1
1.65 152 1.12 0 / 100 0 / 100 ±

Goldman2 1.0 1.25 310 0.95 0 / 100 92 / 100 1 11
1.45 197 1.02 0 / 100 49 / 100 1
1.65 112 1.10 0 / 100 0 / 100 ±

MGHEX 1.0 1.25 677 0.93 0 / 100 29 / 100 5 23
1.45 374 0.99 0 / 100 24 / 100 2
1.65 196 1.06 0 / 100 0 / 100 ±

Munich1 1.0 1.25 313 0.96 0 / 100 4 / 100 1 20
1.45 206 1.02 0 / 100 5 / 100 8
1.55 163 1.06 1 / 100 0 / 100 ±

BHAT 1.0 1.25 221 0.98 0 / 100 44 / 100 1 15
1.45 136 1.05 1 / 100 15 / 100 4
1.65 74 1.15 0 / 100 0 / 100 ±

TVAL 1.0 1.25 754 1.01 0 / 100 100 / 100 1 14
1.45 423 1.11 2 / 100 82 / 100 1
1.65 245 1.21 0 / 100 7 / 100 5

Winter2 1.0 1.25 669 0.93 0 / 100 3 / 100 1 20
1.50 353 1.03 0 / 100 2 / 100 2
1.60 256 1.08 0 / 100 0 / 100 ±

APAPA 1.0 1.50 307 1.00 1 / 100 7 / 100 4 28
1.65 204 1.06 0 / 100 1 / 100 2

PEP1 1.0 1.45 407 1.01 0.2 / 1000 1.5 / 1000 2 21
1.65 242 1.09 0 / 1000 0 / 1000 ±

APP 1.10 1.45 1087 0.95 ± 7 / 100 1 43
Rubredoxin 1.15 1.45 1121 0.99 ± 1 / 100 3 43
Alpha1 1.00 1.59 1636 1.08 ± 1.4 / 500 1 25
Pheromone 1.05 1.50 1068 1.04 ± 0.025 /4000 65 48

² The relatively large R value is due to the large thermal disorder in the chains.



value of S(�) is reached. The R values in Table 2 have been

computed with

R � 1000
n

1ÿ
hP�FoFc�1=2

i2.�P
Fo

P
Fc

�o
�17�

assuming an overall thermal parameter. A solution has been

considered as correct if after 10 Fourier cycles most atoms

show up in the E map. The number of cycles was enlarged to

40 for the largest structures tested (and for PGE2).

The three analysed |E|min values were 1.25, 1.45 and 1.65.

Inspection of the data listed in Table 2 clearly shows that the

best results are obtained for |E|min = 1.25. Not only the ranking

number of the correct solutions is lower but also the number

of correct solutions increases. In most cases, the correct

solution is the top solution. This result is understandable since

lower |E|min values produce more accurate |E(H, U)| and,

owing to the size of these structures, the increase in the

number of variables is still manageable.

For the larger structures, only tests with |E|min in the range

1.45±1.59 have been performed owing to the large number of

triplets. For APP, rubredoxin and alpha1, the results look very

promising. One surprise has been the rather low ranking

number of the correct solutions for these three compounds.

For pheromone, however, the ranking number of the correct

solution is 65 (out of 4000 trials), which could be identi®ed

because it has the best PSIZERO and RESID ®gures of merit.

Tests with larger structures possessing the origin ®xed in all

three directions, e.g. P212121, have been avoided. As shown in

Rius et al. (1994), the number of correct solutions drastically

decreases in comparison with space groups having the origin

¯oating at least in one direction. Since the maximization

procedure used by the actual version of XLENSTM is a

conventional tangent formula re®nement, it is very improb-

able that correct solutions can be found for these compounds.

4.2. Function S(U) for different reflection ratios
r = Nweak=Nlarge

Since the ®rst applications of the S(�) function, the number

of weak re¯ections has been estimated by making

Nweak � Nlarge. Owing to the good results obtained from the

beginning, no further investigations were carried out

regarding this point. Recently, in order to complete the study

of the function, XLENSTM has been slightly modi®ed to allow

for different ratios r. The results of a series of test calculations

for |E|min = 1.25 with ratios ranging from 0.5 to 2 are listed in

Table 3. These results indicate that the ef®ciency of the

function is rather insensitive to ratio variations within the

studied interval.

Finally, a series of test calculations has been performed

including not only the large and weak re¯ections but all

measured re¯ections. As can be seen in Table 4, the results are

also excellent, although the practical importance of these

results is limited because the computing effort is much higher

than for lower ratios.
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